SC2-发展离子液体调控技术揭示铁基超导与奇异金属态间量化规律

高温超导微观机理是凝聚态物理最具挑战的科学难题之一。当高温超导电性被外场破坏后,其正常态电阻率会展现出随温度线性变化(从高温延伸至接近绝对零度)的“奇异金属”行为。十年前,研究人员发现奇异金属正常态与高温超导之间存在着密切联系,探究两者间量化物理规律是揭示高温超导微观机理的重要路径。然而高温超导材料组成结构复杂,传统的合成与表征手段难以获得足够数量的高精度数据,定性到定量认识过程极具挑战,因此亟需发展新的实验手段实现对单一变量的高效、高精度控制。鉴于此,中国科学院物理研究所超导国家重点实验室金魁研究员团队发展了材料基因工程连续组分单晶薄膜实验技术,在1平方厘米的SrTiO3单晶衬底上实现精细的元素配比调控,成功制备出具有单晶品质、化学组分连续变化的高温超导La2-xCexCuO4薄膜 (0.10 ≤ x ≤0.19)。同时,结合跨尺度表征技术,将物性分辨率提升两个数量级(从10-2至10-4),首次揭示超导转变温度Tc与奇异金属线性电阻斜率A1间的量化规律,即Tc∝A10.5【Nature 602, 431 (2022)】。接下来一个关键的问题是:Tc和A1之间的0.5次幂关系是否具有普适性及其物理意义是什么?尽管已有的研究数据表明空穴型铜氧化物和有机超导体也符合这一趋势,但由于其数据点较少,缺乏系统性的数据从而难以给出准确的结论。

SC3-铜氧化物超导体高压下的超导-绝缘体相变

对固体施加一个压力,晶格常数会变小,由此可增加能带宽度,把一个绝缘体转变为导体。这是高压诱导的绝缘体向导体的转变是固体材料常见的物理现象,称之为Wilson转变。而把一个金属甚至超导体通过压力,在不改变电子的价键特性的前提下,转变为绝缘体是一个非常困难的事。但这件几乎不可能发生的物理现象最近被发现了。该项工作由中国科学院物理研究所/北京凝聚态物理国家研究中心超导国家重点实验室孙力玲研究员带领的团队与所内向涛院士、周兴江研究员、胡江平研究员等,以及美国布鲁克海文国家实验室顾根大研究员和德国马普所林成天研究员合作,利用先进的高压研究手段,在Bi2212铜氧化物超导体中发现的。他们采用独立发展的高压原位电阻-磁化率一体化测量技术对这类超导体进行了系统的研究,发现欠掺杂、最佳掺杂和过掺杂Bi2212铜氧化物超导体在较低的压力下超导转变温度(Tc)升高到一定值后开始单调下降直至被完全抑制,随之系统并没有转变成人们通常预期的金属态,而是令人意外的进入了一个类绝缘体态,超导态与这种绝缘体态通过量子相变点相连接。进一步的实验结果表明,上述压力诱导的超导-类绝缘态量子相变不仅在每个晶胞具有两层CuO2面的Bi2212系统中出现,而且在每个晶胞具有一层和三层CuO2面的Bi2201和Bi2223系统中也存在。