研究成果

研究成果

科研进展

SC5-Q03量子计算实现随机混态的纠缠相变观测

随机量子态指的是在整个希尔伯特空间中均匀分布的量子态,由于希尔伯特空间的维数随着比特数指数增长,在实验上制备和观测多比特的随机量子态是十分困难的,谷歌团队就是利用随机量子态的制备和采样这一经典计算困难的问题来实现量子霸权的。同时,随机态在黑洞物理等领域内也引起了广泛兴趣。最近有一些理论工作预测,将随机态划分为系统和环境两部分后,改变环境和系统的相对大小,系统内会出现纠缠相变。但是这种纠缠相变需要用到纠缠负度(negativity) 来刻画,而对多比特纠缠系统,这一实验测量一般是困难的。同时考虑到多比特随机量子态制备的挑战性,这种纠缠相变一直没有在实验上被人们所实现和观测。

SC2-发展离子液体调控技术揭示铁基超导与奇异金属态间量化规律

高温超导微观机理是凝聚态物理最具挑战的科学难题之一。当高温超导电性被外场破坏后,其正常态电阻率会展现出随温度线性变化(从高温延伸至接近绝对零度)的“奇异金属”行为。十年前,研究人员发现奇异金属正常态与高温超导之间存在着密切联系,探究两者间量化物理规律是揭示高温超导微观机理的重要路径。然而高温超导材料组成结构复杂,传统的合成与表征手段难以获得足够数量的高精度数据,定性到定量认识过程极具挑战,因此亟需发展新的实验手段实现对单一变量的高效、高精度控制。鉴于此,中国科学院物理研究所超导国家重点实验室金魁研究员团队发展了材料基因工程连续组分单晶薄膜实验技术,在1平方厘米的SrTiO3单晶衬底上实现精细的元素配比调控,成功制备出具有单晶品质、化学组分连续变化的高温超导La2-xCexCuO4薄膜 (0.10 ≤ x ≤0.19)。同时,结合跨尺度表征技术,将物性分辨率提升两个数量级(从10-2至10-4),首次揭示超导转变温度Tc与奇异金属线性电阻斜率A1间的量化规律,即Tc∝A10.5【Nature 602, 431 (2022)】。接下来一个关键的问题是:Tc和A1之间的0.5次幂关系是否具有普适性及其物理意义是什么?尽管已有的研究数据表明空穴型铜氧化物和有机超导体也符合这一趋势,但由于其数据点较少,缺乏系统性的数据从而难以给出准确的结论。

SC5-Q03超导量子电路中基于周期驱动的算符传播研究

算符的传播是研究量子多体系统非平衡动力学的一个新视角,它与利布-罗宾逊界限以及量子混沌系统中的信息置乱(information scrambling)等概念紧密相关,近年来在高能物理、凝聚态物理以及统计物理等领域引起了人们很大的兴趣。算符的传播可用非时序关联子(out-of-time-order correlator,OTOC)来量化,而OTOC测量则需让系统在时间上反向演化,即让哈密顿量反号,这对量子模拟实验提出了巨大的挑战。周期驱动(Floquet工程)可以用来改变量子比特间的耦合,在量子系统的相干调控中已广泛应用,该方法为实现量子多体系统反向演化和测量OTOC提供了一个可能的途径。

SC10-在Mo5Si3中通过磷/砷掺杂实现最高Tc ~ 10.8 K的强耦合超导电性

超导体具有零电阻效应、迈斯纳效应和约瑟夫森效应等物理特性,这使其在大电流、强磁场、微弱信号检测等诸多基础领域具有广阔的应用前途和无与伦比的优势。但目前实际应用的超导材料仍然是以液氦温区工作的NbTi合金为主,高昂的成本极大地限制了其应用范围。中国科学院物理研究所/北京凝聚态物理国家研究中心超导实验室SC10组研究团队长期致力于新型超导材料的探索,已经发现了几十种新型超导体。近几年来,他们在Mo基化合物中又相继发现了新型三元准一维结构超导体K2Mo3As3、Rb2Mo3As3和Cs2Mo3As3,最高超导Tc 达到 11.5 K,是目前Tc  最高的准一维结构超导体,但是这些化合物在空气中极不稳定。随后他们又发现了一种金属间硼化合物新超导体Mo5GeB2,Tc ~ 5.8 K,这些不断探索发现的新型超导体极大地丰富了Mo基超导体系。

SC5-Q03量子计算云平台实现多比特纠缠态

量子计算取得令人瞩目的进展,但普通大众是否现在就能方便的体验量子计算机呢?量子计算云平台以互联网云计算形式提供了量子计算资源给普通使用者,公众可以登录网页,利用国际通用的量子汇编语言,或者图形拖拽界面直接构建量子线路等形式,发送自己的量子计算任务到实验室里的量子计算机,使之进行计算并返回结果,人们可以利用量子计算云平台进行科研、教学、测试等各种任务,而量子计算云平台本身的性能,用户体验等是衡量其先进性的重要指标。